If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2=289
We move all terms to the left:
q^2-(289)=0
a = 1; b = 0; c = -289;
Δ = b2-4ac
Δ = 02-4·1·(-289)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34}{2*1}=\frac{-34}{2} =-17 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34}{2*1}=\frac{34}{2} =17 $
| w^2=169 | | 0.75(8+4b)=11−(3b+1.7) | | 8.25-3z=-8z | | 17=4+10+m | | 225=p^2 | | x/60=4/20 | | 361=h^2 | | 2.1(0.2x-1.4)=1.3(0.4-3.5) | | 36=r^2 | | ∣x+3/4∣∣=−11 | | ∣x+34∣∣=−11 | | (7x((4x)=28x | | 3x+27+x+55+90=180 | | 2.25=1/x | | 13=10+m | | 2.25=1,x | | 12x-3x=-38-4 | | f^2=36 | | 16-7m=3 | | 1/4X+3/12=x/3 | | (7p-1)^1/3+11=7 | | 2x–4=3x-1 | | 16=n^2 | | 144=f^2 | | 20x2–100x=0 | | 2.2x-1.39=0.8x-2.37 | | 25=z^2 | | 8(5k+5)=0 | | .−7c−5=−8+c | | 15+40=x | | 1.8x+0.3=0.7x-1.46 | | 4p-5=235 |